SM调教室虐男受调教H打开腿,被迫多次高潮抽搐,公交车上内裤滑进去了会怎么样,日韩内射美女人妻一区二区三区

技術(shù)文章

Technical articles

當(dāng)前位置:首頁技術(shù)文章等離子體處理對 硅表面氧空位缺陷工程

等離子體處理對 硅表面氧空位缺陷工程

更新時間:2020-12-02點(diǎn)擊次數(shù):2565

Electronic Supplementary Information For

Surface oxygen vacancy defect engineering of p-CuAlO2 via Ar&H2 plasma

treatment for enhancing VOCs sensing performances

Bin Tong, a b Gang Meng, * a c Zanhong Deng, a c Mati Horprathum, d Annop

Klamchuen e and Xiaodong Fang * a c

aAnhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine

Mechanics, Chinese Academy of Sciences, Hefei, 230031, China

bUniversity of Science and Technology of China, Hefei 230026, China

cKey Lab of Photovoltaic and Energy Conservation Materials, Chinese Academy of Sciences, Hefei

230031, China

d Opto-Electrochemical Sensing Research Team, National Electronic and Computer Technology Center,

PathumThani 12120, Thailand

eNational Nanotechnology Center, National Science and Technology Development Agency, Pathum

Thani 12120, Thailand

 

Experimental Section

1.1 Synthesis of CuAlO2 particles

First of all, 0.04 mol Cu(CH3COO)2·H2O (Alfa Aesar, 99.9%) was dissolved in 160 mL absolute alcohol with

vigorous stirring, and then 16 mL HNO3 (Sinopharm Chemical Reagent, 99.7%), 0.2 mol C6H8O7·H2O

(Sinopharm Chemical Reagent, 99.8%) and 0.04 mol Al[OCH(CH3)CH2CH3]3 (Alfa Aesar, 97%) were added into

the above solution in sequence. After stirring for 6 hours, 16 mL HNO3 was added to the solution drop by drop to

obtain a well-mixed precursor solution. The precursor solution was dried at 100 °C overnight. In order to remove

the organics, the condensed solution was heated to 300 °C for 6 hours. After that, the dried powders were milled

for 24 h using a planetary ball miller and then annealed at 1100 °C for 10 h under air atmosphere. Subsequently,

the powders were reground and heated to 950 °C under flowing N2 atmosphere for 6 hours to form delafossite

CuAlO2 particles. To ensure the pure phase of delafossite CuAlO2, trace (excess) CuxO was washed with 1 M

diluted hydrochloric acid, 11 deionized water and absolute alcohol in sequence several times, and the final products

were dried in an oven at 80 °C for 24 h.

1.2 Fabrication of CuAlO2 sensors

The CuAlO2 slurry was prepared by dispersing the powders in appropriate isopropyl alcohol. CuAlO2 sensors

were prepared by brushing the above paste onto a thin alumina substrate with micro-interdigital Pt electrodes.

CuAlO2 films on slide glass substrates were fabricated simultaneously for characterization. After naturally drying,

the CuAlO2 sensors and films were heated at 350 °C under flowing air atmosphere for 3 hours. Afterwards, the

samples were treated by Ar&H2 plasma in KT-S2DQX (150 W, 13.56 MHz, (鄭州科探儀器設(shè)備有限公司)) plasma etching system

at 10 sccm 4% H2 in Ar and the pressure of ~ 99.8 Pa for 30 min, 60 min and 90 min, herein are referred to as

pristine, PT-30, PT-60 and PT-90.

1.3 Characterization and gas sensing test

CuAlO2 samples were characterized by X-ray diffraction (XRD, Rigaku Smartlab), scanning electron

microscope (SEM, VEGA3 TESCAN), field emission high resolution transmission electron microscope

(HRTEM, Talos F200X), X-ray photoelectron spectroscopy (XPS, Thermo Scientific Esca Lab 250Xi

spectrometer ), photoluminescence (PL, JY Fluorolog-3-Tou) and Electron spin resonance (ESR, JEOL, JES

FA200 ESR spectrometer ). Mott-Schottky measurements were carried out on an electrochemical work-station

(Zahner Company, Germany) in 1M NaOH solution (pH=12.5) with frequency of 5000 Hz. Platinum sheet,

Ag/AgCl electrode and pristine/ PT-30 CuAlO2 samples were used as counter electrode, reference electrode and

work electrode, respectively. Gas sensing tests were examined in SD101 (Hua Chuang Rui Ke Technology Co.,

Ltd.) sensing system. The response was defined as ΔR/Ra, ΔR = Rg Ra, where Ra and Rg are sensor resistance in

 

flowing drying air and synthetic VOCs, respectively. During gas sensing test, the total flow rate of the dry air and

VOCs gas were adjusted to be 1000 sccm by mass flow controllers (MFCs).

 

Fig. S1. Cross-sectional SEM image of typical CuAlO2 sensors. The inset shows a low-magnification image.

The sensing layer is comprised of loosely packed CuAlO2 particles, with a thickness of ~ 15 μm

 

 

Fig. S2. XRD patterns of pristine and Ar&H2 plasma treated CuAlO2 sensors. Ar&H2 plasma treatment didn’t

cause any detectable impurity phase. All the samples show a 3R (dominent) and 2H mixed CuAlO2 phase.

 

Fig. S3. SEM images of pristine (a) and Ar&H2 plasma treated PT-30 (b), PT-60 (c) and PT-90 (d) CuAlO2

sensors. Except for 90 minitues treated sample (PT-90) with appearance of small nanodots, no obrvious change

of surface morphology was obervered via Ar&H2 plasma treatment.

 中國科學(xué)技術(shù)大學(xué)   申請論文提名獎CC - 2019 - SI - Surface oxygen vacancy defect engineering of p-CuAlO2 via Ar&H2 plasma treatment

感謝中科大的論文    沒有發(fā)完  之后我在慢慢更新吧

少妇一晚三次一区二区三区| 在线精品国产一区二区三区| 国产精品久久久久久人妻精品| 书房双乳晃动干柴烈火视频| 亚洲一区爱区精品无码| 女人18片毛片60分钟| 男女裸体做爰爽爽全过程| 亚洲午夜精品久久久久久浪潮| 掀开奶罩躁狠狠躁学生H视频| 夜夜躁天天躁很躁| 少妇荡乳情欲办公室456视频| 老熟女重囗味HDXX70星空| 国产麻豆一区二区三区精品视频| 精品一区二区久久久久久久网站| 亚洲色大成网站WWW久久九九| 女生和男生一起差差30分app| 清冷医生受H打开腿乖听话男男| 久久精品中文字幕一区二区三区| 秘密爱在线观看| 在教室伦流澡到高潮HNP| 天天躁日日躁狠狠躁AV麻豆| 日韩AV高清在线观看| 无人区一码二码三码四码区| 在厨房我撕开岳的丁字裤| AV网站在线观看| 国产精品无码一本二本三本色| 亚洲AV无码专区国产乱码不卡| 色综合AV综合无码综合网站| 搡老熟女多毛丰满国产精品| 久久久噜噜噜久久中文字幕色伊伊| 色偷偷国色天香在线观看免费视频| 国产精品久久久久婷婷五月色婷婷| 欧美性受XXXX白人性爽| 我的初次内射欧美成人影视| 男女无遮挡XX00动态图120秒| 成年免费视频黄网站在线观看| 国产激情一区二区三区| 色婷婷综合久久久久中文一区二区| 欧美私人家庭影院| 成人区人妻精品一区二区不卡视频| 英语老师解开裙子坐我腿中间|